Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positivity and Fourier integrals over regular hexagon (1508.07615v1)

Published 30 Aug 2015 in math.CA

Abstract: Let $f \in L1(\mathbb{R}2)$ and let $\widehat f$ be its Fourier integral. We study summability of the partial integral $S_{\rho,\mathsf{H}}(x)=\int_{{|y|\mathsf{H} \le \rho}} e{i x\cdot y}\widehat f(y) dy$, where $|y|\mathsf{H}$ denotes the uniform norm taken over the regular hexagonal domain. We prove that the Riesz $(R,\delta)$ means of the inverse Fourier integrals are nonnegative if and if $\delta \ge 2$. Moreover, we describe a class of $|\cdot|_\mathsf{H}$-radial functions that are positive definite on $\mathbb{R}2$.

Summary

We haven't generated a summary for this paper yet.