Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the trace of random walks on random graphs (1508.07355v2)

Published 28 Aug 2015 in math.CO and math.PR

Abstract: We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any $\varepsilon>0$ there exists $C>1$ such that the trace of the simple random walk of length $(1+\varepsilon)n\ln{n}$ on the random graph $G\sim G(n,p)$ for $p>C\ln{n}/n$ is, with high probability, Hamiltonian and $\Theta(\ln{n})$-connected. In the special case $p=1$ (i.e. when $G=K_n$), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the $k$'th time, the trace becomes $2k$-connected.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.