On the trace of random walks on random graphs (1508.07355v2)
Abstract: We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any $\varepsilon>0$ there exists $C>1$ such that the trace of the simple random walk of length $(1+\varepsilon)n\ln{n}$ on the random graph $G\sim G(n,p)$ for $p>C\ln{n}/n$ is, with high probability, Hamiltonian and $\Theta(\ln{n})$-connected. In the special case $p=1$ (i.e. when $G=K_n$), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the $k$'th time, the trace becomes $2k$-connected.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.