Papers
Topics
Authors
Recent
2000 character limit reached

Continuum Space Limit of the Genealogies of Interacting Fleming-Viot Processes on $\Z$

Published 28 Aug 2015 in math.PR | (1508.07169v2)

Abstract: We study the evolution of genealogies of a population of individuals, whose type frequencies result in an interacting Fleming-Viot process on $\Z$. We construct and analyze the genealogical structure of the population in this genealogy-valued Fleming-Viot process as a marked metric measure space, with each individual carrying its spatial location as a mark. We then show that its time evolution converges to that of the genealogy of a continuum-sites stepping stone model on $\R$, if space and time are scaled diffusively. We construct the genealogies of the continuum-sites stepping stone model as functionals of the Brownian web, and furthermore, we show that its evolution solves a martingale problem. The generator for the continuum-sites stepping stone model has a singular feature: at each time, the resampling of genealogies only affects a set of individuals of measure $0$. Along the way, we prove some negative correlation inequalities for coalescing Brownian motions, as well as extend the theory of marked metric measure spaces (developed recently by Depperschmidt, Greven and Pfaffelhuber [DGP12]) from the case of probability measures to measures that are finite on bounded sets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.