Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization (1508.06720v4)
Abstract: In this paper we prove two results, one semi-historical and the other new. The semi-historical result, which goes back to Thurston and Riley, is that the geometrization theorem implies that there is an algorithm for the homeomorphism problem for closed, oriented, triangulated 3-manifolds. We give a self-contained proof, with several variations at each stage, that uses only the statement of the geometrization theorem, basic hyperbolic geometry, and old results from combinatorial topology and computer science. For this result, we do not rely on normal surface theory, methods from geometric group theory, nor methods used to prove geometrization. The new result is that the homeomorphism problem is elementary recursive, i.e., that the computational complexity is bounded by a bounded tower of exponentials. This result relies on normal surface theory, Mostow rigidity, and bounds on the computational complexity of solving algebraic equations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.