Non-zero-sum stopping games in discrete time (1508.06032v1)
Abstract: We consider two-player non-zero-sum stopping games in discrete time. Unlike Dynkin games, in our games the payoff of each player is revealed after both players stop. Moreover, each player can adjust her own stopping strategy according to the other player's action. In the first part of the paper, we consider the game where players act simultaneously at each stage. We show that there exists a Nash equilibrium in mixed stopping strategies. In the second part, we assume that one player has to act first at each stage. In this case, we show the existence of a Nash equilibrium in pure stopping strategies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.