Papers
Topics
Authors
Recent
Search
2000 character limit reached

Arithmetic and pseudo-arithmetic billiards

Published 9 Aug 2015 in nlin.CD, math.DS, and quant-ph | (1508.02075v1)

Abstract: The arithmetic triangular billiards are classically chaotic but have Poissonian energy level statistics, in ostensible violation of the BGS conjecture. We show that the length spectra of their periodic orbits divides into subspectra differing by the parity of the number of reflections from the triangle sides; in the quantum treatment that parity defines the reflection phase of the orbit contribution to the Gutzwiller formula for the energy level density. We apply these results to all 85 arithmetic triangles and establish the boundary conditions under which the quantum billiard is \textquotedblleft genuinely arithmetic\textquotedblright, i. e., has Poissonian level statistics; otherwise the billiard is "pseudo-arithmetic" and belongs to the GOE universality class

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.