Arithmetic and pseudo-arithmetic billiards
Abstract: The arithmetic triangular billiards are classically chaotic but have Poissonian energy level statistics, in ostensible violation of the BGS conjecture. We show that the length spectra of their periodic orbits divides into subspectra differing by the parity of the number of reflections from the triangle sides; in the quantum treatment that parity defines the reflection phase of the orbit contribution to the Gutzwiller formula for the energy level density. We apply these results to all 85 arithmetic triangles and establish the boundary conditions under which the quantum billiard is \textquotedblleft genuinely arithmetic\textquotedblright, i. e., has Poissonian level statistics; otherwise the billiard is "pseudo-arithmetic" and belongs to the GOE universality class
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.