Papers
Topics
Authors
Recent
2000 character limit reached

Improving Decision Analytics with Deep Learning: The Case of Financial Disclosures

Published 9 Aug 2015 in stat.ML, cs.CL, and cs.LG | (1508.01993v2)

Abstract: Decision analytics commonly focuses on the text mining of financial news sources in order to provide managerial decision support and to predict stock market movements. Existing predictive frameworks almost exclusively apply traditional machine learning methods, whereas recent research indicates that traditional machine learning methods are not sufficiently capable of extracting suitable features and capturing the non-linear nature of complex tasks. As a remedy, novel deep learning models aim to overcome this issue by extending traditional neural network models with additional hidden layers. Indeed, deep learning has been shown to outperform traditional methods in terms of predictive performance. In this paper, we adapt the novel deep learning technique to financial decision support. In this instance, we aim to predict the direction of stock movements following financial disclosures. As a result, we show how deep learning can outperform the accuracy of random forests as a benchmark for machine learning by 5.66%.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.