Papers
Topics
Authors
Recent
2000 character limit reached

Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree (1508.01867v1)

Published 8 Aug 2015 in math.CA

Abstract: We study the periodic boundary value problem associated with the second order nonlinear differential equation $$ u" + c u' + \left(a{+}(t) - \mu \, a{-}(t)\right) g(u) = 0, $$ where $g(u)$ has superlinear growth at zero and at infinity, $a(t)$ is a periodic sign-changing weight, $c\in\mathbb{R}$ and $\mu>0$ is a real parameter. We prove the existence of $2{m}-1$ positive solutions when $a(t)$ has $m$ positive humps separated by $m$ negative ones (in a periodicity interval) and $\mu$ is sufficiently large. The proof is based on the extension of Mawhin's coincidence degree defined in open (possibly unbounded) sets and applies also to Neumann boundary conditions. Our method also provides a topological approach to detect subharmonic solutions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.