Papers
Topics
Authors
Recent
Search
2000 character limit reached

Winding numbers of phase transition points for one-dimensional topological systems

Published 7 Aug 2015 in cond-mat.str-el | (1508.01680v1)

Abstract: We study topological properties of phase transition points of one-dimensional topological quantum phase transitions by assigning winding numbers defined on closed circles around the gap closing points in the parameter space of momentum and a transition driving parameter, which overcomes the problem of ill definition of winding numbers on the transition points. By applying our scheme to the extended Kitaev model and extended Su-Schrieffer-Heeger model, we demonstrate that the topological phase transition can be well characterized by winding numbers of transition points, which reflect the change of the winding number of topologically different phases across the phase transition points.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.