Winding numbers of phase transition points for one-dimensional topological systems
Abstract: We study topological properties of phase transition points of one-dimensional topological quantum phase transitions by assigning winding numbers defined on closed circles around the gap closing points in the parameter space of momentum and a transition driving parameter, which overcomes the problem of ill definition of winding numbers on the transition points. By applying our scheme to the extended Kitaev model and extended Su-Schrieffer-Heeger model, we demonstrate that the topological phase transition can be well characterized by winding numbers of transition points, which reflect the change of the winding number of topologically different phases across the phase transition points.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.