Papers
Topics
Authors
Recent
2000 character limit reached

One model, two languages: training bilingual parsers with harmonized treebanks

Published 30 Jul 2015 in cs.CL | (1507.08449v2)

Abstract: We introduce an approach to train lexicalized parsers using bilingual corpora obtained by merging harmonized treebanks of different languages, producing parsers that can analyze sentences in either of the learned languages, or even sentences that mix both. We test the approach on the Universal Dependency Treebanks, training with MaltParser and MaltOptimizer. The results show that these bilingual parsers are more than competitive, as most combinations not only preserve accuracy, but some even achieve significant improvements over the corresponding monolingual parsers. Preliminary experiments also show the approach to be promising on texts with code-switching and when more languages are added.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.