Computational principles of biological memory
Abstract: Memories are stored, retained, and recollected through complex, coupled processes operating on multiple timescales. To understand the computational principles behind these intricate networks of interactions we construct a broad class of synaptic models that efficiently harnesses biological complexity to preserve numerous memories. The memory capacity scales almost linearly with the number of synapses, which is a substantial improvement over the square root scaling of previous models. This was achieved by combining multiple dynamical processes that initially store memories in fast variables and then progressively transfer them to slower variables. Importantly, the interactions between fast and slow variables are bidirectional. The proposed models are robust to parameter perturbations and can explain several properties of biological memory, including delayed expression of synaptic modifications, metaplasticity, and spacing effects.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.