Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Spectral structure of singular spectrum decomposition for time series (1507.07330v1)

Published 27 Jul 2015 in cs.DS

Abstract: Singular spectrum analysis (SSA) is a nonparametric and adaptive spectral decomposition of a time series. The singular value decomposition of the trajectory matrix and the anti-diagonal averaging leads to a time-series decomposition. In this algorithm, a single free parameter, window length $K$, is involved which is the FIR filter length for the time series. There are no generally accepted criterion for the proper choice of the window length $K$. Moreover, the proper window length depends on the specific problem which we are interested in. Thus, it is important to monitor the spectral structure of the SSA decomposition and its window length dependence in detail for the practical application. In this paper, based on the filtering interpretation of SSA, it is shown that the decomposition of the power spectrum for the original time series is possible with the filters constructed from the eigenvectors of the lagged-covariance matrix. With this, we can obtain insights into the spectral structure of the SSA decomposition and it helps us for the proper choice of the window length in the practical application of SSA.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.