Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extremals in the Engel group with a sub-Lorentzian metric (1507.07326v1)

Published 27 Jul 2015 in math.DG

Abstract: Let E be the Engel group and D be a rank 2 bracket generating left invariant distribution with a Lorentzian metric, which is a nondegenerate metric of index 1. In this paper, we first prove that timelike normal extremals are locally maximizing. Second, we obtain a parametrization of timelike, spacelike, lightlike normal extremal trajectories by Jacobi functions. Third, a discrete symmetry group and its fixed points which are Maxwell points of of timelike and spacelike normal extremals, are described. An estimate for the cut time (the time of loss of optimality) on extremal trajectories is derived on this basis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.