Tensor Products of the Operator System Generated by the Cuntz Isometries (1507.06958v1)
Abstract: We study tensor products and nuclearity-related properties of the operator system $\mathcal S_n$ generated by the Cuntz isometries. By using the nuclearity of the Cuntz algebra, we can show that $\mathcal{S}n$ is $C*$-nuclear, and this implies a dual row contraction version of Ando's theorem characterizing operators of numerical radius 1. On the other hand, without using the nuclearity of the Cuntz algebra, we are still able to show directly this Ando type property of dual row contractions and conclude that $\mathcal{S}_n$ is $C*$-nuclear, which yields a new proof of the nuclearity of the Cuntz algebras. We prove that the dual operator system of $\mathcal{S}_n$ is completely order isomorphic to an operator subsystem of $M{n+1}$. Finally, a lifting result concerning Popescu's joint numerical radius is proved via operator system techniques.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.