Statistics of time delay and scattering correlation functions in chaotic systems I. Random Matrix Theory
Abstract: We consider the statistics of time delay in a chaotic cavity having $M$ open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix $Q=-i\hbar S\dag dS/dE$, where $S$ is the scattering matrix. Our results do not assume $M$ to be large. In a companion paper, we develop a semiclassical approximation to $S$-matrix correlation functions, from which the statistics of $Q$ can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.