Papers
Topics
Authors
Recent
2000 character limit reached

Distinguishing short and long $Fermi$ gamma-ray bursts

Published 17 Jul 2015 in astro-ph.HE, astro-ph.CO, and stat.ML | (1507.04886v4)

Abstract: Two classes of gamma-ray bursts (GRBs), short and long, have been determined without any doubts, and are usually ascribed to different progenitors, yet these classes overlap for a variety of descriptive parameters. A subsample of 46 long and 22 short $Fermi$ GRBs with estimated Hurst Exponents (HEs), complemented by minimum variability time-scales (MVTS) and durations ($T_{90}$) is used to perform a supervised Machine Learning (ML) and Monte Carlo (MC) simulation using a Support Vector Machine (SVM) algorithm. It is found that while $T_{90}$ itself performs very well in distinguishing short and long GRBs, the overall success ratio is higher when the training set is complemented by MVTS and HE. These results may allow to introduce a new (non-linear) parameter that might provide less ambiguous classification of GRBs.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.