Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Variational Gram Functions: Convex Analysis and Optimization (1507.04734v3)

Published 16 Jul 2015 in math.OC, cs.LG, and stat.ML

Abstract: We propose a new class of convex penalty functions, called \emph{variational Gram functions} (VGFs), that can promote pairwise relations, such as orthogonality, among a set of vectors in a vector space. These functions can serve as regularizers in convex optimization problems arising from hierarchical classification, multitask learning, and estimating vectors with disjoint supports, among other applications. We study convexity for VGFs, and give efficient characterizations for their convex conjugates, subdifferentials, and proximal operators. We discuss efficient optimization algorithms for regularized loss minimization problems where the loss admits a common, yet simple, variational representation and the regularizer is a VGF. These algorithms enjoy a simple kernel trick, an efficient line search, as well as computational advantages over first order methods based on the subdifferential or proximal maps. We also establish a general representer theorem for such learning problems. Lastly, numerical experiments on a hierarchical classification problem are presented to demonstrate the effectiveness of VGFs and the associated optimization algorithms.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.