Renormalization and Hopf Algebraic Structure of the 5-Dimensional Quartic Tensor Field Theory (1507.03548v1)
Abstract: This paper is devoted to the study of renormalization of the quartic melonic tensor model in dimension (=rank) five. We review the perturbative renormalization and the computation of the one loop beta function, confirming the asymptotic freedom of the model. We then define the Connes-Kreimer-like Hopf algebra describing the combinatorics of the renormalization of this model and we analyze in detail, at one- and two-loop levels, the Hochschild cohomology allowing to write the combinatorial Dyson-Schwinger equations. Feynman tensor graph Hopf subalgebras are also exhibited.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.