Curvature properties of some class of warped product manifolds (1507.02915v1)
Abstract: Warped product manifolds with p-dimensional base, p=1,2, satisfy some curvature conditions of pseudosymmetry type. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result of the paper states that if p=2 and the fibre is a semi-Riemannian space of constant curvature, if n is greater or equal to 4, then the (0,6)-tensors R.R - Q(S,R) and C.C of such warped products are proportional to the (0,6)-tensor Q(g,C) and the tensor C is expressed by a linear combination of some Kulkarni-Nomizu products formed from the tensors g and S. Thus these curvature conditions satisfy non-conformally flat non-Einstein warped product spacetimes (p=2, n=4). We also investigate curvature properties of pseudosymmetry type of quasi-Einstein manifolds. In particular, we obtain some curvature property of the Goedel spacetime.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.