On sums of eigenvalues of elliptic operators on manifolds (1507.02632v2)
Abstract: We use the averaged variational principle introduced in a recent article on graph spectra [7] to obtain upper bounds for sums of eigenvalues of several partial differential operators of interest in geometric analysis, which are analogues of Kr{\"o}ger 's bound for Neumann spectra of Laplacians on Euclidean domains [12]. Among the operators we consider are the Laplace-Beltrami operator on compact subdomains of manifolds. These estimates become more explicit and asymptotically sharp when the manifold is conformal to homogeneous spaces (here extending a result of Strichartz [21] with a simplified proof). In addition we obtain results for the Witten Laplacian on the same sorts of domains and for Schr{\"o}dinger operators with confining potentials on infinite Euclidean domains. Our bounds have the sharp asymptotic form expected from the Weyl law or classical phase-space analysis. Similarly sharp bounds for the trace of the heat kernel follow as corollaries.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.