Counting coloured planar maps: differential equations (1507.02391v2)
Abstract: We address the enumeration of q-coloured planar maps counted bythe number of edges and the number of monochromatic edges. We prove that the associated generating function is differentially algebraic,that is, satisfies a non-trivial polynomial differential equation withrespect to the edge variable. We give explicitly a differential systemthat characterizes this series. We then prove a similar result for planar triangulations, thus generalizing a result of Tutte dealing with their proper q-colourings. Instatistical physics terms, we solvethe q-state Potts model on random planar lattices. This work follows a first paper by the same authors, where the generating functionwas proved to be algebraic for certain values of q,including q=1, 2 and 3. It isknown to be transcendental in general. In contrast, our differential system holds for an indeterminate q.For certain special cases of combinatorial interest (four colours; properq-colourings; maps equipped with a spanning forest), we derive from this system, in the case of triangulations, an explicit differential equation of order 2 defining the generating function. For general planar maps, we also obtain a differential equation of order 3 for the four-colour case and for the self-dual Potts model.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.