Papers
Topics
Authors
Recent
2000 character limit reached

Double-Base Asymmetric AdaBoost

Published 8 Jul 2015 in cs.CV, cs.AI, and cs.LG | (1507.02154v1)

Abstract: Based on the use of different exponential bases to define class-dependent error bounds, a new and highly efficient asymmetric boosting scheme, coined as AdaBoostDB (Double-Base), is proposed. Supported by a fully theoretical derivation procedure, unlike most of the other approaches in the literature, our algorithm preserves all the formal guarantees and properties of original (cost-insensitive) AdaBoost, similarly to the state-of-the-art Cost-Sensitive AdaBoost algorithm. However, the key advantage of AdaBoostDB is that our novel derivation scheme enables an extremely efficient conditional search procedure, dramatically improving and simplifying the training phase of the algorithm. Experiments, both over synthetic and real datasets, reveal that AdaBoostDB is able to save over 99% training time with regard to Cost-Sensitive AdaBoost, providing the same cost-sensitive results. This computational advantage of AdaBoostDB can make a difference in problems managing huge pools of weak classifiers in which boosting techniques are commonly used.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.