Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emphatic Temporal-Difference Learning (1507.01569v1)

Published 6 Jul 2015 in cs.LG and cs.AI

Abstract: Emphatic algorithms are temporal-difference learning algorithms that change their effective state distribution by selectively emphasizing and de-emphasizing their updates on different time steps. Recent works by Sutton, Mahmood and White (2015), and Yu (2015) show that by varying the emphasis in a particular way, these algorithms become stable and convergent under off-policy training with linear function approximation. This paper serves as a unified summary of the available results from both works. In addition, we demonstrate the empirical benefits from the flexibility of emphatic algorithms, including state-dependent discounting, state-dependent bootstrapping, and the user-specified allocation of function approximation resources.

Citations (32)

Summary

We haven't generated a summary for this paper yet.