Regularity lemma for distal structures (1507.01482v2)
Abstract: It is known that families of graphs with a semialgebraic edge relation of bounded complexity satisfy much stronger regularity properties than arbitrary graphs, and that they can be decomposed into very homogeneous semialgebraic pieces up to a small error (e.g., see [33, 2, 16, 18]). We show that similar results can be obtained for families of graphs with the edge relation uniformly definable in a structure satisfying a certain model theoretic property called distality, with respect to a large class of generically stable measures. Moreover, distality characterizes these strong regularity properties. This applies in particular to graphs definable in arbitrary $o$-minimal structures and in $p$-adics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.