Papers
Topics
Authors
Recent
2000 character limit reached

Conditional speed of branching Brownian motion, skeleton decomposition and application to random obstacles

Published 5 Jul 2015 in math.PR | (1507.01277v2)

Abstract: We study a branching Brownian motion $Z$ in $\mathbb{R}d$, among obstacles scattered according to a Poisson random measure with a radially decaying intensity. Obstacles are balls with constant radius and each one works as a trap for the whole motion when hit by a particle. Considering a general offspring distribution, we derive the decay rate of the annealed probability that none of the particles of $Z$ hits a trap, asymptotically in time $t$. This proves to be a rich problem motivating the proof of a more general result about the speed of branching Brownian motion conditioned on non-extinction. We provide an appropriate "skeleton" decomposition for the underlying Galton-Watson process when supercritical and show that the "doomed" particles do not contribute to the asymptotic decay rate.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.