Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Moment Representations of the Exceptional $X_1$-Laguerre Orthogonal Polynomials (1506.07580v1)

Published 24 Jun 2015 in math.CA and math.SP

Abstract: Exceptional orthogonal Laguerre polynomials can be viewed as an extension of the classical Laguerre polynomials per excluding polynomials of certain order(s) from being eigenfunctions for the corresponding exceptional differential operator. We are interested in the (so-called) Type I $X_1$-Laguerre polynomial sequence ${L_n\alpha}_{n=1}\infty$, $\text{deg} \,p_n = n$ and $\alpha>0$, where the constant polynomial is omitted. We derive two representations for the polynomials in terms of moments by using determinants. The first representation in terms of the canonical moments is rather cumbersome. We introduce adjusted moments and find a second, more elegant formula. We deduce a recursion formula for the moments and the adjusted ones. The adjusted moments are also expressed via a generating function. We observe a certain detachedness of the first two moments from the others.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube