Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exceptional collections on Dolgachev surfaces associated with degenerations (1506.05213v4)

Published 17 Jun 2015 in math.AG

Abstract: Dolgachev surfaces are simply connected minimal elliptic surfaces with $p_g=q=0$ and of Kodaira dimension 1. These surfaces were constructed by logarithmic transformations of rational elliptic surfaces. In this paper, we explain the construction of Dolgachev surfaces via $\mathbb Q$-Gorenstein smoothing of singular rational surfaces with two cyclic quotient singularities. This construction is based on the paper by Lee-Park. Also, some exceptional bundles on Dolgachev surfaces associated with $\mathbb Q$-Gorenstein smoothing are constructed based on the idea of Hacking. In the case if Dolgachev surfaces were of type $(2,3)$, we describe the Picard group and present an exceptional collection of maximal length. Finally, we prove that the presented exceptional collection is not full, hence there exist a nontrivial phantom category in the derived category.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.