Papers
Topics
Authors
Recent
2000 character limit reached

Quickly constructing curves of genus 4 with many points

Published 15 Jun 2015 in math.NT | (1506.04478v1)

Abstract: The "defect" of a curve over a finite field is the difference between the number of rational points on the curve and the Weil-Serre bound for the curve. We present a construction for producing genus-4 double covers of genus-2 curves over finite fields such that the defect of the double cover is not much more than the defect of the genus-2 curve. We give an algorithm that uses this construction to produce genus-4 curves with small defect. Heuristically, for all sufficiently large primes and for almost all prime powers q, the algorithm is expected to produce a genus-4 curve over F_q with defect at most 4 in time q{3/4}, up to logarithmic factors. As part of the analysis of the algorithm, we present a reinterpretation of results of Hayashida on the number of genus-2 curves whose Jacobians are isomorphic to the square of a given elliptic curve with complex multiplication by a maximal order. We show that a category of principal polarizations on the square of such an elliptic curve is equivalent to a category of right ideals in a certain quaternion order.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.