Papers
Topics
Authors
Recent
2000 character limit reached

Exact simulation of max-stable processes

Published 14 Jun 2015 in stat.ME, math.ST, and stat.TH | (1506.04430v1)

Abstract: Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes simulation highly nontrivial. Algorithms based on finite approximations that are used in practice are often not exact and computationally inefficient. We will present two algorithms for exact simulation of a max-stable process at a finite number of locations. The first algorithm generalizes the approach by \citet{DM-2014} for Brown--Resnick processes and it is based on simulation from the spectral measure. The second algorithm relies on the idea to simulate only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We study the complexity of both algorithms and prove that the second procedure is always more efficient. Moreover, we provide closed expressions for their implementation that cover the most popular models for max-stable processes and extreme value copulas. For simulation on dense grids, an adaptive design of the second algorithm is proposed.

Citations (112)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.