Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes (1506.04024v2)

Published 12 Jun 2015 in math.AG

Abstract: Pantev, Toen, Vaqui\'e and Vezzosi arXiv:1111.3209 defined $k$-shifted symplectic derived schemes and stacks ${\bf X}$ for $k\in\mathbb Z$, and Lagrangians ${\bf f}:{\bf L}\to{\bf X}$ in them. They have important applications to Calabi-Yau geometry and quantization. Bussi, Brav and Joyce arXiv:1305.6302 proved a 'Darboux Theorem' giving explicit Zariski or \'etale local models for $k$-shifted symplectic derived schemes ${\bf X}$ for $k<0$ presenting them as twisted shifted cotangent bundles. We prove a 'Lagrangian Neighbourhood Theorem' giving explicit Zariski or etale local models for Lagrangians ${\bf f}:{\bf L}\to{\bf X}$ in $k$-shifted symplectic derived schemes ${\bf X}$ for $k<0$, relative to the Bussi-Brav-Joyce 'Darboux form' local models for ${\bf X}$. That is, locally such Lagrangians can be presented as twisted shifted conormal bundles. We also give a partial result when $k=0$. We expect our results will have future applications to $k$-shifted Poisson geometry (see arXiv:1506.03699), to defining 'Fukaya categories' of complex or algebraic symplectic manifolds, and to categorifying Donaldson-Thomas theory of Calabi-Yau 3-folds and 'Cohomological Hall algebras'.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.