One-Component Regular Variation and Graphical Modeling of Extremes (1506.03402v3)
Abstract: The problem of inferring the distribution of a random vector given that its norm is large requires modeling a homogeneous limiting density. We suggest an approach based on graphical models which is suitable for high-dimensional vectors. We introduce the notion of one-component regular variation to describe a function that is regularly varying in its first component. We extend the representation and Karamata's theorem to one-component regularly varying functions, probability distributions and densities, and explain why these results are fundamental in multivariate extreme-value theory. We then generalize Hammersley-Clifford theorem to relate asymptotic conditional independence to a factorization of the limiting density, and use it to model multivariate tails.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.