Rigidity of manifolds with boundary under a lower Bakry-E'mery Ricci curvature bound (1506.03223v4)
Abstract: We study Riemannian manifolds with boundary under a lower Bakry-E'mery Ricci curvature bound. In our weighted setting, we prove several rigidity theorems for such manifolds with boundary. We conclude a rigidity theorem for the inscribed radii, a volume growth rigidity theorem for the metric neighborhoods of the boundaries, and various splitting theorems. We also obtain rigidity results for the smallest Dirichlet eigenvalues for the weighted p-Laplacians.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.