Central limit theorem under variance uncertainty (1506.01551v2)
Abstract: We prove the central limit theorem (CLT) for a sequence of independent zero-mean random variables $\xi_j$, perturbed by predictable multiplicative factors $\lambda_j$ with values in intervals $[\underline\lambda_j,\overline\lambda_j]$. It is assumed that the sequences $\underline\lambda_j$, $\overline\lambda_j$ are bounded and satisfy some stabilization condition. Under the classical Lindeberg condition we show that the CLT limit, corresponding to a "worst" sequence $\lambda_j$, is described by the solution $v$ of one-dimensional $G$-heat equation. The main part of the proof follows Peng's approach to the CLT under sublinear expectations, and utilizes H\"{o}lder regularity properties of $v$. Under the lack of such properties, we use the technique of half-relaxed limits from the theory of viscosity solutions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.