Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Benefit of Limited Feedback to Generation-Based Random Linear Network Coding in Wireless Broadcast (1506.01150v1)

Published 3 Jun 2015 in cs.IT and math.IT

Abstract: Random linear network coding (RLNC) is asymptotically throughput optimal in the wireless broadcast of a block of packets from a sender to a set of receivers, but suffers from heavy computational load and packet decoding delay. To mitigate this problem while maintaining good throughput, we partition the packet block into disjoint generations after broadcasting the packets uncoded once and collecting one round of feedback about receivers' packet reception state. We prove the NP-hardness of the optimal partitioning problem by using a hypergraph coloring approach, and develop an efficient heuristic algorithm for its solution. Simulations show that our algorithm outperforms existing solutions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.