Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-Order Decision Theory (1506.01003v2)

Published 2 Jun 2015 in cs.GT

Abstract: Classical decision theory models behaviour in terms of utility maximisation where utilities represent rational preference relations over outcomes. However, empirical evidence and theoretical considerations suggest that we need to go beyond this framework. We propose to represent goals by higher-order functions or operators that take other functions as arguments where the max and argmax operators are special cases. Our higher-order functions take a context function as their argument where a context represents a process from actions to outcomes. By that we can define goals being dependent on the actions and the process in addition to outcomes only. This formulation generalises outcome based preferences to context-dependent goals. We show how to uniformly represent within our higher-order framework classical utility maximisation but also various other extensions that have been debated in economics.

Citations (14)

Summary

We haven't generated a summary for this paper yet.