Papers
Topics
Authors
Recent
Search
2000 character limit reached

Wilson Loop Invariants from $W_N$ Conformal Blocks

Published 22 May 2015 in hep-th, math-ph, and math.MP | (1505.06221v1)

Abstract: Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern-Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for $W_N$ conformal blocks with one component in the fundamental representation and another in a rectangular representation of $SU(N)$, which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of $W_N$ algebra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.