Evolutionary graph theory revisited: general dynamics and the Moran process
Abstract: Evolution in finite populations is often modelled using the classical Moran process. Over the last ten years this methodology has been extended to structured populations using evolutionary graph theory. An important question in any such population, is whether a rare mutant has a higher or lower chance of fixating (the fixation probability) than the Moran probability, i.e. that from the original Moran model, which represents an unstructured population. As evolutionary graph theory has developed, different ways of considering the interactions between individuals through a graph and an associated matrix of weights have been considered, as have a number of important dynamics. In this paper we revisit the original paper on evolutionary graph theory in light of these extensions to consider these developments in an integrated way. In particular we find general criteria for when an evolutionary graph with general weights satisfies the Moran probability for the set of six common evolutionary dynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.