Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret (1505.05798v1)

Published 21 May 2015 in cs.LG

Abstract: Lifelong reinforcement learning provides a promising framework for developing versatile agents that can accumulate knowledge over a lifetime of experience and rapidly learn new tasks by building upon prior knowledge. However, current lifelong learning methods exhibit non-vanishing regret as the amount of experience increases and include limitations that can lead to suboptimal or unsafe control policies. To address these issues, we develop a lifelong policy gradient learner that operates in an adversarial set- ting to learn multiple tasks online while enforcing safety constraints on the learned policies. We demonstrate, for the first time, sublinear regret for lifelong policy search, and validate our algorithm on several benchmark dynamical systems and an application to quadrotor control.

Citations (61)

Summary

We haven't generated a summary for this paper yet.