Comparing the orthogonal and homotopy functor calculi (1505.05458v1)
Abstract: Goodwillie's homotopy functor calculus constructs a Taylor tower of approximations to F, often a functor from spaces to spaces. Weiss's orthogonal calculus provides a Taylor tower for functors from vector spaces to spaces. In particular, there is a Weiss tower associated to the functor which sends a vector space V to F evaluated at the one-point compactification of V. In this paper, we give a comparison of these two towers and show that when F is analytic the towers agree up to weak equivalence. We include two main applications, one of which gives as a corollary the convergence of the Weiss Taylor tower of BO. We also lift the homotopy level tower comparison to a commutative diagram of Quillen functors, relating model categories for Goodwillie calculus and model categories for the orthogonal calculus.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.