Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

How unimodular gravity theories differ from general relativity at quantum level (1505.04978v4)

Published 19 May 2015 in hep-th and gr-qc

Abstract: We investigate path integral quantization of two versions of unimodular gravity. First a fully diffeomorphism-invariant theory is analyzed, which does not include a unimodular condition on the metric, while still being equivalent to other unimodular gravity theories at the classical level. The path integral has the same form as in general relativity (GR), except that the cosmological constant is an unspecified value of a variable, and it thus is unrelated to any coupling constant. When the state of the universe is a superposition of vacuum states, the path integral is extended to include an integral over the cosmological constant. Second, we analyze the standard unimodular theory of gravity, where the metric determinant is fixed by a constraint. Its path integral differs from the one of GR in two ways: the metric of spacetime satisfies the unimodular condition only in average over space, and both the Hamiltonian constraint and the associated gauge condition have zero average over space. Finally, the canonical relation between the given unimodular theories of gravity is established.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.