Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dense Semantic Correspondence where Every Pixel is a Classifier (1505.04143v1)

Published 15 May 2015 in cs.CV

Abstract: Determining dense semantic correspondences across objects and scenes is a difficult problem that underpins many higher-level computer vision algorithms. Unlike canonical dense correspondence problems which consider images that are spatially or temporally adjacent, semantic correspondence is characterized by images that share similar high-level structures whose exact appearance and geometry may differ. Motivated by object recognition literature and recent work on rapidly estimating linear classifiers, we treat semantic correspondence as a constrained detection problem, where an exemplar LDA classifier is learned for each pixel. LDA classifiers have two distinct benefits: (i) they exhibit higher average precision than similarity metrics typically used in correspondence problems, and (ii) unlike exemplar SVM, can output globally interpretable posterior probabilities without calibration, whilst also being significantly faster to train. We pose the correspondence problem as a graphical model, where the unary potentials are computed via convolution with the set of exemplar classifiers, and the joint potentials enforce smoothly varying correspondence assignment.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.