Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Real Time Facial Expression Classification System Using Local Binary Patterns

Published 15 May 2015 in cs.CV | (1505.04058v1)

Abstract: Facial expression analysis is one of the popular fields of research in human computer interaction (HCI). It has several applications in next generation user interfaces, human emotion analysis, behavior and cognitive modeling. In this paper, a facial expression classification algorithm is proposed which uses Haar classifier for face detection purpose, Local Binary Patterns (LBP) histogram of different block sizes of a face image as feature vectors and classifies various facial expressions using Principal Component Analysis (PCA). The algorithm is implemented in real time for expression classification since the computational complexity of the algorithm is small. A customizable approach is proposed for facial expression analysis, since the various expressions and intensity of expressions vary from person to person. The system uses grayscale frontal face images of a person to classify six basic emotions namely happiness, sadness, disgust, fear, surprise and anger.

Citations (136)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.