2000 character limit reached
Hyperbolic groups with boundary an n-dimensional Sierpinski space (1505.03817v1)
Published 14 May 2015 in math.GT and math.GR
Abstract: For n>6, we show that if G is a torsion-free hyperbolic group whose visual boundary is an (n-2)-dimensional Sierpinski space, then G=\pi_1(W) for some aspherical n-manifold W with nonempty boundary. Concerning the converse, we construct, for each n>3, examples of aspherical manifolds with boundary, whose fundamental group G is hyperbolic, but with visual boundary not homeomorphic to an (n-2)-dimensional Sierpinski space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.