Papers
Topics
Authors
Recent
2000 character limit reached

Dynamical Quantum Phase Transitions in the Kitaev Honeycomb Model

Published 13 May 2015 in cond-mat.stat-mech | (1505.03401v1)

Abstract: The notion of a dynamical quantum phase transition (DQPT) was recently introduced in [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)] as the non-analytic behavior of the Loschmidt echo at critical times in the thermodynamic limit. In this work the quench dynamics in the ground state sector of the two-dimensional Kitaev honeycomb model are studied regarding the occurrence of DQPTs. For general two-dimensional systems of BCS-type it is demonstrated how the zeros of the Loschmidt echo coalesce to areas in the thermodynamic limit, implying that DQPTs occur as discontinuities in the second derivative. In the Kitaev honeycomb model DQPTs appear after quenches across a phase boundary or within the massless phase. In the 1d limit of the Kitaev honeycomb model it becomes clear that the discontinuity in the higher derivative is intimately related to the higher dimensionality of the non-degenerate model. Moreover, there is a strong connection between the stationary value of the rate function of the Loschmidt echo after long times and the occurrence of DQPTs in this model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.