Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Decision-Theoretic Classification Using Non-Decomposable Performance Metrics

Published 7 May 2015 in cs.LG and stat.ML | (1505.01802v1)

Abstract: We provide a general theoretical analysis of expected out-of-sample utility, also referred to as decision-theoretic classification, for non-decomposable binary classification metrics such as F-measure and Jaccard coefficient. Our key result is that the expected out-of-sample utility for many performance metrics is provably optimized by a classifier which is equivalent to a signed thresholding of the conditional probability of the positive class. Our analysis bridges a gap in the literature on binary classification, revealed in light of recent results for non-decomposable metrics in population utility maximization style classification. Our results identify checkable properties of a performance metric which are sufficient to guarantee a probability ranking principle. We propose consistent estimators for optimal expected out-of-sample classification. As a consequence of the probability ranking principle, computational requirements can be reduced from exponential to cubic complexity in the general case, and further reduced to quadratic complexity in special cases. We provide empirical results on simulated and benchmark datasets evaluating the performance of the proposed algorithms for decision-theoretic classification and comparing them to baseline and state-of-the-art methods in population utility maximization for non-decomposable metrics.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.