Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Comparison of hit-and-run, slice sampling and random walk Metropolis (1505.00579v3)

Published 4 May 2015 in math.PR, math.ST, and stat.TH

Abstract: Different Markov chains can be used for approximate sampling of a distribution given by an unnormalized density function with respect to the Lebesgue measure. The hit-and-run, (hybrid) slice sampler and random walk Metropolis algorithm are popular tools to simulate such Markov chains. We develop a general approach to compare the efficiency of these sampling procedures by the use of a partial ordering of their Markov operators, the covariance ordering. In particular, we show that the hit-and-run and the simple slice sampler are more efficient than a hybrid slice sampler based on hit-and-run which, itself, is more efficient than a (lazy) random walk Metropolis algorithm.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.