Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Representation of Videos for Anomaly Detection using Deep Learning: A Review (1505.00523v1)

Published 4 May 2015 in cs.CV

Abstract: This review article surveys the current progresses made toward video-based anomaly detection. We address the most fundamental aspect for video anomaly detection, that is, video feature representation. Much research works have been done in finding the right representation to perform anomaly detection in video streams accurately with an acceptable false alarm rate. However, this is very challenging due to large variations in environment and human movement, and high space-time complexity due to huge dimensionality of video data. The weakly supervised nature of deep learning algorithms can help in learning representations from the video data itself instead of manually designing the right feature for specific scenes. In this paper, we would like to review the existing methods of modeling video representations using deep learning techniques for the task of anomaly detection and action recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yong Shean Chong (3 papers)
  2. Yong Haur Tay (11 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.