Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Linear-Time Particle Gibbs Sampler for Infinite Hidden Markov Models (1505.00428v2)

Published 3 May 2015 in stat.ML

Abstract: Infinite Hidden Markov Models (iHMM's) are an attractive, nonparametric generalization of the classical Hidden Markov Model which can automatically infer the number of hidden states in the system. However, due to the infinite-dimensional nature of transition dynamics performing inference in the iHMM is difficult. In this paper, we present an infinite-state Particle Gibbs (PG) algorithm to resample state trajectories for the iHMM. The proposed algorithm uses an efficient proposal optimized for iHMMs and leverages ancestor sampling to suppress degeneracy of the standard PG algorithm. Our algorithm demonstrates significant convergence improvements on synthetic and real world data sets. Additionally, the infinite-state PG algorithm has linear-time complexity in the number of states in the sampler, while competing methods scale quadratically.

Citations (2)

Summary

We haven't generated a summary for this paper yet.