Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient algorithm for estimating state sequences in imprecise hidden Markov models (1210.1791v1)

Published 5 Oct 2012 in cs.AI and math.PR

Abstract: We present an efficient exact algorithm for estimating state sequences from outputs (or observations) in imprecise hidden Markov models (iHMM), where both the uncertainty linking one state to the next, and that linking a state to its output, are represented using coherent lower previsions. The notion of independence we associate with the credal network representing the iHMM is that of epistemic irrelevance. We consider as best estimates for state sequences the (Walley--Sen) maximal sequences for the posterior joint state model conditioned on the observed output sequence, associated with a gain function that is the indicator of the state sequence. This corresponds to (and generalises) finding the state sequence with the highest posterior probability in HMMs with precise transition and output probabilities (pHMMs). We argue that the computational complexity is at worst quadratic in the length of the Markov chain, cubic in the number of states, and essentially linear in the number of maximal state sequences. For binary iHMMs, we investigate experimentally how the number of maximal state sequences depends on the model parameters. We also present a simple toy application in optical character recognition, demonstrating that our algorithm can be used to robustify the inferences made by precise probability models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jasper De Bock (45 papers)
  2. Gert de Cooman (35 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.