Isomonodromic $τ$-functions and $W_N$ conformal blocks (1505.00259v3)
Abstract: We study the solution of the Schlesinger system for the 4-point $\mathfrak{sl}_N$ isomonodromy problem and conjecture an expression for the isomonodromic $\tau$-function in terms of 2d conformal field theory beyond the known $N=2$ Painlev\'e VI case. We show that this relation can be used as an alternative definition of conformal blocks for the $W_N$ algebra and argue that the infinite number of arbitrary constants arising in the algebraic construction of $W_N$ conformal block can be expressed in terms of only a finite set of parameters of the monodromy data of rank $N$ Fuchsian system with three regular singular points. We check this definition explicitly for the known conformal blocks of the $W_3$ algebra and demonstrate its consistency with the conjectured form of the structure constants.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.